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Abstract. We consider an exactly solvable two-chain quantum spin-1
2 model in a generalized

form with enhanced spin frustration. This model is exactly diagonalized via Bethe’s ansatz. The
low-temperature specific heat of the system is obtained with and without a magnetic field, using
the thermodynamic Bethe ansatz equations. We also calculate the magnetic susceptibility in a
sufficiently weak field, yielding typical logarithmic corrections. The spin frustration affects only
the amplitudes in the magnetic susceptibility and the specific heat. This extends the previous
results for a simple two-chain quantum spin model to the generalized one.

1. Introduction

The discovery of numerous high-temperature superconductors has renewed the interest in
low-dimensional systems. It is known to be common to all compounds exhibiting a high
Tc that high-Tc superconductivity is strongly related to the layers containing copper and
oxygen atoms. Some theorists have approached this problem using a one-dimensional chain
of copper and oxygen atoms for simplicity, even though the two-dimensional Hubbard model
is more relevant. The idea of the one-dimensional chain is extended to copper oxide ladders
which have structures of pairs of copper oxide chains linked by additional oxygen atoms
between coppers [1, 2]. Recently, a few compounds have been realized experimentally
with a ladder structure [3] and one of these compounds, Sr0.4Ca13.6Cu24O41.18 is reported to
have superconductivity [4]. These compounds can be mapped to spin-1

2 antiferromagnetic
ladders with frustration only if considering the magnetic properties. Understanding the
ground state for the spin-frustrated system is one of the most interesting issues in the
magnetic properties of solids. Phosphates VO(HPO4)4H2O [5] are one of the realizations
of the two-chain quantum spin model and the two-plane quantum Hall effect [6] also shows
some properties of the two-chain quantum spin model.

An exactly solvable multi-chain quantum spin model has been constructed by using
the quantum inverse scattering method, and the thermodynamics of the model has been
discussed via the Bethe ansatz method in [7–9, 11]. The transfer matrixT̂ (λ) for the
multi-chain spin-12 model is expressed by a product of the transfer matrices for the typical

Heisenberg model with shifted spectral parameters. For instance,T̂ (λ) = t̂ (λ+κ) t̂(λ) for a
two-chain case, wherêt is the transfer matrix of a single chain andκ denotes the interchain
coupling. The corresponding Hamiltonian contains the terms breakingP andT symmetry
which is responsible for the chiral behaviour in the thermodynamic properties.

In this paper, we construct an exactly solvable two-chain quantum spin model in a
generalized form, using the generalized transfer matrix ofT̂ (λ) = t̂ α(λ + κ) t̂β(λ), where
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α and β are constants. This transfer matrix also yields an integrable Hamiltonian by
construction, however, the Hamiltonian is more frustrated by arbitraryα andβ. In section 2,
we present the generalized two-chain spin Hamiltonian and the Bethe ansatz equations. In
section 3, we obtain the Bethe ansatz equation in the limit of zero temperature and a weak
but finite magnetic field, which means that the temperature goes to zero faster than the
magnetic field. We calculate the magnetic susceptibilityχs and the linear coefficient of
specific heatγ in a magnetic field. On the other hand, in section 4, we discuss the limit of
zero field and a low but finite temperature in which the magnetic field goes to zero faster
than the temperature, andγ is obtained at zero magnetic field. Concluding remarks follow
in section 5.

2. Model and Bethe ansatz equations

We consider the Hamiltonian for a two-chain spin system

H = α + β
1+ κ2

N∑
n=1

(ES2n−1 · ES2n + ES2n · ES2n+1)+ κ2

1+ κ2

N∑
n=1

(α ES2n−1 · ES2n+1+ β ES2n · ES2n+2)

+ 2κ

1+ κ2

N∑
n=1

(α ES2n−1− β ES2n+2) · (ES2n+1× ES2n)−H
N∑
n=1

(
Sz2n−1+ Sz2n

)− Ef
(2.1)

where ES2n−1 (ES2n) is spin 1
2 operator at site 2n − 1 (2n) in the first (second) chain,N is

the number of spins on each chain,κ is related to the interchain coupling, andEf is the
energy of the ferromagnetic state, i.e.Ef = (α + β)

(
2+ κ2

)
/
[
4
(
1+ κ2

)]
. α andβ are the

arbitrary constants andH is the external magnetic field. Note that the model is reduced to
a single Heisenberg chain of 2N spins with exchange couplingα + β whenκ = 0.

The third term in the Hamiltonian has an unusual form and it is not avoidable for the
integrability of the two-chain spin system. Whenα = β, the third term breaks bothT and
P symmetries, while conservingT P symmetry and the neighbouring triangular spin sets
have chiralities of different signs for the antiferromagnetic case [9, 10]. Arbitraryα andβ
can enhance the spin frustration of the Hamiltonian. It is especially interesting to consider
thatα > 0, β < 0 andα + β > 0. This situation describes an antiferromagnetic interchain
interaction, while the spins in the first (second) chain tend to interact antiferromagnetically
(ferromagnetically) with each other.

The Hamiltonian in (2.1) was obtained by the logarithmic derivative of the transfer
matrix T̂ as usual. The transfer matrix of the system is constructed by using the quantum
inverse scattering method as

T̂ (λ) = t̂ α(λ+ κ) t̂β(λ) (2.2)

where t̂ is the standard transfer matrix of the single chain of spin1
2 andλ is the spectral

parameter. The diagonalization of the transfer matrixT̂ requires that the spin rapiditiesλj ,
satisfy the discrete Bethe ansatz equations(
λj − κ − i
λj − κ + i

)N(
λj + κ − i
λj + κ + i

)N
= −

M∏
k=1

λj − λk − 2i

λj − λk + 2i
j = 1, 2, . . . ,M (2.3)

with M denoting the total number of down spins in two chains of the system. Periodic
boundary conditions have been imposed to derive (2.3) and theλ values are, in general,
complex numbers. These discrete Bethe ansatz equations do not depend on the values of
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α and β, since the eigenfunctions of the transfer matrix do not change withα and β by
construction. The eigenvalues, however, do change due toα andβ. The solutions of (2.3)
determine the energy eigenvalues,

E = −2
M∑
j=1

[
α

(λj − κ)2+ 1
+ β

(λj + κ)2+ 1

]
−H(N −M). (2.4)

For largeN , we have the so-called string solutions such asλ
j
n,α = λn,α + i(n+ 1− 2j),

j = 1, 2, . . . , n where λn,α is real andn = 1, 2, . . . ,∞. There areMn strings of
length n, labelled by the indexα, hence, the total number of electrons with spin down
is M =∑∞n=1 nMn.

In the thermodynamic limit the usual distribution densitiesρn(λ) for the occupied real
parametersλn,α and similarly the corresponding ‘hole’ distribution functionsρn,h(λ) for the
unoccupied rapidities [12, 13] are introduced. These distribution functions are related by
the following integral equations:

ρn,h(λ)+
∞∑
m=1

An,m ∗ ρm = 1
2[an(λ− κ)+ an(λ+ κ)] (2.5)

where∗ denotes convolution. The integration kernelsAnm(λ) and an(λ) are the Fourier
transforms of

Ãn,m(ω) = eiλω coth|ω|[e−(n−m)|ω| − e−(n+m)|ω|
]

ãn(ω) = e−n|ω|.
(2.6)

The energy per spin is then given by

E

2N
= −2π

∞∑
n=1

∫ ∞
−∞

dλ [αan(λ− κ)+ βan(λ+ κ)]ρn −H
[

1
2 −

∞∑
n=1

n

∫ ∞
−∞

dλ ρn

]
. (2.7)

As usual, the rapidities obey Fermi statistics so that the entropy of the system can be
written as

S

2N
=
∞∑
n=1

∫ ∞
−∞

dλ {[ρn(λ)+ ρn,h(λ)] ln[ρn(λ)+ ρn,h(λ)]

−ρn(λ) ln ρn(λ)− ρn,h(λ) ln ρn,h(λ)} (2.8)

and the density functions are obtained by minimizing the thermodynamic potentialF =
E − T S with respect to the distribution functions, subject to the constraints in (2.5). It
is convenient to introduceηn = ρn,h/ρn and in terms of these functions we have the
thermodynamic Bethe ansatz equations

ln[1+ ηn(λ)] = nH

T
− 2π

T
[αan(λ− κ)+ βan(λ+ κ)] +

∞∑
m=1

An,m ∗ ln
(
1+ η−1

m

)
. (2.9)

Equivalently,ηn satisfy the following nonlinearly coupled integral equations:

ln ηn = −2π

T
[αG0(λ− κ)+ βG0(λ+ κ)]δn,1+G0 ∗ ln(1+ ηn−1)(1+ ηn+1) (2.10)

whereGn(λ) is defined by

Gn(λ) = 1

2π

∫ ∞
−∞

dω
e−n|ω|

2 cosh|ω|e
−iωλ. (2.11)
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The free energy per spin is then given by

F(T ,H)

2N
− F(0, 0)

2N
= −T

2

∫ ∞
−∞

dλ [G0(λ− κ)+G0(λ+ κ)] ln[1 + η1(λ)] (2.12)

whereF(0, 0)/2N = −(α + β)π [G1(0) + G1(2κ)] with 2πG1(0) being ln 2. Note that
for κ = 0, the ground-state energy per spin reduces to−(α + β) ln 2 as expected from the
conventional Heisenberg chain of 2N spins.

3. Zero-temperature limit in field

The ground-state equations are recovered in the limitT → 0. It is convenient to introduce
the following energy potentials for the excitations,εn(λ) = T ln ηn(λ). These energy
potentials are further separated into their positive and negative parts,ε+n andε−n , respectively.
In the T → 0 limit it can be shown thatεn>2(λ) > 0 and thereforeε−n>2(λ) = 0 for all
λ-values after some algebra [13]. Hence the ground state of the system is described only
by ε1. Fourier transforming (2.9) forn = 1, the equation describing the ground state of the
system is given by

ε1(λ) = 1
2H − 2π [αG0(λ− κ)+ βG0(λ+ κ)] +G1 ∗ T ln

(
1+ eε1/T

)
. (3.1)

In the case ofα = β or κ = 0, it is well known thatε1(λ) is a symmetric and monotonically
increasing function for positive arguments [13]. Generally, however, it is asymmetric and
has very different behaviour depending uponα, β and κ. In a weak magnetic field with
α > 0, β < 0, α + β > 0 and 0< κ < (1/π) ln |α/β|, the driving terms are simply
shifted to positiveλ compared to those ofα = β or κ = 0. This shift breaks the symmetry
of ε1(λ) in λ. If κ > (1/π) ln |α/β|, on the other hand, then the driving terms generate
a new maximum aroundλ ∼ −κ and a minimum aroundλ ∼ κ which yield totally
different behaviours inε1(λ) and cannot be treated analytically. In this section, let us
obtain analytically the magnetic susceptibility and the specific heat in a weak magnetic field
(0< H � (α+β)/(1+κ2

)
) by solving this integral equation analytically forα > 0, β < 0,

α + β > 0 and 0< κ < (1/π) ln |α/β|.

3.1. Magnetic susceptibility atT = 0

Let us denoteε1(λ) at T = 0 asε(0)1 (λ). When 0< κ < (1/π) ln |α/β|, ε(0)1 (λ) has at most
two zeros defined byε(0)1 (−B1) = 0 and ε(0)1 (B2) = 0 whereB2 > B1 > 0. Moreover,
ε
(0)+
1 (λ) is non-vanishing only in the intervalλ < −B1 or λ > B2 in the ground state. Note

thatB1 andB2 approaches to infinity asH goes to zero. At strictly zero temperature the
integral equation (3.1) can be written as

ε
(0)
1 (λ) = 1

2H − 2π [αG0(λ− κ)+ βG0(λ+ κ)] +G1 ∗ ε(0)+1 . (3.2)

The free energy is then given by

F(0, H)

2N
− F(0, 0)

2N
= −1

2

(∫ −B1

−∞
+
∫ ∞
B2

)
dλ[G0(λ− κ)+G0(λ+ κ)]ε(0)1 (λ). (3.3)

Since equation (3.2) is not symmetric, unlike that for a single chain [14], it is
convenient to introduce two functionsz(λ) and y(λ) defined byz(λ) = ε(0)1 (λ − B1) and
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y(λ) = ε(0)1 (λ+ B2), then the ground-state integral equation (3.2) is rewritten as

z(λ) = 1
2H − 2π [αG0(λ− B1− κ)+ βG0(λ− B1+ κ)] +

∫ 0

−∞
dλ′G1(λ− λ′) z(λ′)

+
∫ ∞

0
dλ′G1(λ− λ′ − B1− B2) y(λ

′) (3.4)

or

y(λ) = 1
2H − 2π [αG0(λ+ B2− κ)+ βG0(λ+ B2+ κ)] +

∫ ∞
0

dλ′G1(λ− λ′) y(λ′)

+
∫ 0

−∞
dλ′G1(λ− λ′ + B1+ B2) z(λ

′). (3.5)

For a sufficiently weak magnetic field, i.e.H � (α + β)/(1 + κ2
)
, these coupled

equations (3.4) and (3.5) can be solved using the Wiener–Hopf method [14] by iterations.
Expandingz(λ) = z1(λ) + z2(λ) andy(λ) = y1(λ) + y2(λ) with z2(λ) andy2(λ) being of
higher order in 1/(B1+ B2) thanz1(λ) andy1(λ), respectively, we have

z1(λ)−
∫ 0

−∞
dλ′G1(λ− λ′) z1(λ

′) = 1
2H − 2π [αG0(λ− B1− κ)

+βG0(λ− B1+ κ)] (3.6)

y1(λ)−
∫ ∞

0
dλ′G1(λ− λ′) y1(λ

′) = 1
2H − 2π [αG0(λ+ B2− κ)

+βG0(λ+ B2+ κ)] (3.7)

z2(λ)−
∫ 0

−∞
dλ′G1(λ− λ′) z2(λ

′) =
∫ ∞

0
dλ′G1(λ− λ′ − B1− B2) y1(λ

′) (3.8)

y2(λ)−
∫ ∞

0
dλ′G1(λ− λ′) y2(λ

′) =
∫ 0

−∞
dλ′G1(λ− λ′ + B1+ B2) z1(λ

′). (3.9)

The solutions of these equations are the following:

z̃1(ω) = − iH

2

g(−ω) g(0)
ω − i0

+ iπ
g(−ω) g( 1

2iπ
)

ω − 1
2iπ

[
αe−

1
2π(B1+κ) + βe−

1
2π(B1−κ)] (3.10)

ỹ1(ω) = iH

2

g(ω) g(0)

ω + i0
− iπ

g(ω) g
(

1
2iπ

)
ω + 1

2iπ

[
αe−

1
2π(B2−κ) + βe−

1
2π(B2+κ)] (3.11)

z̃2(ω) = − iH

2π

g(−ω) g(0)
ω − i0

(
1

B1+ B2
− 2 ln(B1+ B2)

π(B1+ B2)2

)
(3.12)

ỹ2(ω) = iH

2π

g(ω) g(0)

ω + i0

(
1

B1+ B2
− 2 ln(B1+ B2)

π(B1+ B2)2

)
(3.13)

where

f (λ) = 1

2π

∫
dω e−iωλf̃ (ω)

g(ω) =
√

2π

0
(

1
2 − iω/π

)(−iω + 0

eπ

)−iω/π (3.14)

with 0 being a Gamma function. Note that these expressions ofz(λ) and y(λ) are valid
only for λ < 0 andλ > 0, respectively. Using the conditionsz(0) = 0 andy(0) = 0, the
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following relations are now obtained, i.e.

B1 ' − 2

π
ln

[
H g(0)

2π g
(

1
2iπ

)(
αe−πκ/2+ βeπκ/2

)] (3.15)

and

B2 ' − 2

π
ln

[
H g(0)

2πg
(

1
2iπ

)(
αeπκ/2+ βe−πκ/2

)]. (3.16)

The field-dependent term in the free energy (3.3) is then rewritten as

F(0, H)

2N
− F(0, 0)

2N
= −

∫
dω

eiωκ + e−iωκ

8π coshω

[
e−iωB1 z̃(ω)+ eiωB2 ỹ(ω)

]
(3.17)

and hence the magnetic susceptibility becomes

χs = 1

4π2

(
e

1
2πκ + e−

1
2πκ

αe
1
2πκ + βe−

1
2πκ
+ e−

1
2πκ + e

1
2πκ

αe−
1
2πκ + βe

1
2πκ

)[
1+ 1

2| lnH | −
ln | lnH |
4| lnH |2 + · · ·

]
.

(3.18)

Note that in the limitH → 0, the coupling between two spin chains affects only the
magnitude in the susceptibility and the field-correction terms of the typical Heisenberg
chain are preserved. The first logarithmic correction was anticipated by Yang and Yang
[15] and calculated by Babujian [14], while the next-to-leading logarithmic contribution
was obtained by Lee and Schlottmann [16]. Of course, the magnetic susceptibility for
κ = 0 reduces to the well known value 1/

[
π2(α + β)] of the Heisenberg chain with an

antiferromagnetic coupling(α + β) [17, 18].

3.2. Linear specific heat coefficientγ in field

The low-temperature specific heat is linear in temperature. To obtain the linear coefficient
γ in the low-temperature expansion of the free energy, we need theT 2-correction terms to
ε1(λ), i.e.

ε1(λ) ' ε(0)1 (λ)+ T 2 ε
(2)
1 (λ). (3.19)

The ground-state integral equation (3.1) is then separated by using a Sommerfeld expansion,

T ln
(
1+ eε1/T

) ' ε+1 (λ)+ 1
6(πT )

2δ(ε1). (3.20)

ε
(0)
1 satisfies the integral equation (3.2) andε(2)1 responsible for the specific heat satisfies the

following integral equation:

ε
(2)
1 (λ) = π2

6

[∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

−B1

G1(λ+ B1)+
∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

B2

G1(λ− B2)

]
+
(∫ −B1

−∞
+
∫ ∞
B2

)
dλ′G1(λ− λ′) ε(2)1 (λ′). (3.21)
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Considering theε(2)1 contribution to the free energy, the linear coefficientγ of the specific
heat can be expressed by

γ = π2

6

[∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

−B1

{
G0(B1− κ)+G0(B1+ κ)

}
+
∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

B2

{G0(B2− κ)+G0(B2+ κ)}
]

+
(∫ −B1

−∞
+
∫ ∞
B2

)
dλ [G0(λ− κ)+G0(λ+ κ)] ε(2)1 (λ). (3.22)

Hence, to calculateγ , it is necessary to solve the integral equation ofε
(2)
1 (λ) in (3.21). Our

procedure to solve (3.21) is similar to the one used to obtainε
(0)
1 in the above. Defining

ψ(λ) = ε(2)1 (λ − B1) andϕ(λ) = ε(2)1 (λ + B2), the integral equation (3.21) is reduced to
two coupled integral equations forψ(λ) andϕ(λ),

ψ(λ) = π2

6

∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

−B1

G1(λ)+ π
2

6

∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

B2

G1(λ− B1− B2)

+
∫ 0

−∞
dλ′G1(λ− λ′) ψ(λ′)+

∫ ∞
0

dλ′G1(λ− λ′ − B1− B2) ϕ(λ
′) (3.23)

ϕ(λ) = π2

6

∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

B2

G1(λ)+ π
2

6

∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

−B1

G1(λ+ B1+ B2)

+
∫ ∞

0
dλ′G1(λ− λ′) ϕ(λ′)+

∫ 0

−∞
dλ′G1(λ− λ′ + B1+ B2) ϕ(λ

′). (3.24)

The absence of symmetry inε(2)1 (λ) again leads to the coupled forms of these integral
equations. Considering the leading contribution since the next terms can only contribute
to order 1/(B1 + B2)

2 or higher in the free energy, equations (3.23) and (3.24) are simply
rewritten as

ψ(λ) = π2

6

∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

−B1

G1(λ)+
∫ 0

−∞
dλ′G1(λ− λ′) ψ(λ′) (3.25)

ϕ(λ) = π2

6

∣∣∣∣dε(0)1

dλ

∣∣∣∣−1

B2

G1(λ)+
∫ ∞

0
dλ′G1(λ− λ′) ϕ(λ′). (3.26)

These equations are the same as those for the single chain [19] except for the driving terms.
The driving terms are now changed since the integral equation ofε

(0)
1 in (3.2) has been

changed with parametersα, β andκ. Hence∣∣∣∣dε(0)1 (λ)

dλ

∣∣∣∣
−B1

= 1
2π

2g
(

1
2iπ

)
e−

1
2πB1

(
αe−

1
2πκ + βe

1
2πκ
)

(3.27)∣∣∣∣dε(0)1 (λ)

dλ

∣∣∣∣
B2

= 1
2π

2g
(

1
2iπ

)
e−

1
2πB2

(
αe

1
2πκ + βe−

1
2πκ
)
. (3.28)

The integral equations forψ andϕ are of the Wiener–Hopf type and the solutionsψ(λ)
for λ 6 0 andϕ(λ) for λ > 0 can be obtained as

ψ(λ) = 1

3
√

2H

∫
dω e−iωλ[g(−ω)− 1] (3.29)

ϕ(λ) = 1

3
√

2H

∫
dω e−iωλ[g(ω)− 1]. (3.30)
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Insertingψ andϕ into theγ expression in (3.22), we obtain that

γ = 1

6

[
e

1
2πκ + e−

1
2πκ

αe
1
2πκ + βe−

1
2πκ
+ e−

1
2πκ + e

1
2πκ

αe−
1
2πκ + βe

1
2πκ

]
(3.31)

in a weak magnetic field. This result correctly reduces to 2/[3(α + β)] for κ = 0.

4. Low-temperature limit in zero field

So far we have considered the limit ofT → 0 and 0< H � (α+β)/(1+κ2
)

in the previous
section and have shown that only one integral equation forn = 1 plays a significant role.
On the other hand, the case when 0< T � (α+β)/(1+κ2

)
andH = 0 is also interesting.

In this case, however, we have to consider the infinitely coupled integral equations (2.10).
Fortunately, we can calculate the entropy for this limit by the method used by Babujian [14]
and Filyovet al [20]. Note that we are still assuming the limit of 0< κ < (1/π) ln |α/β|
for the analytic approach.

The integral equations in (2.5) for the distribution functions and (2.10) for the energy
potentials can be rewritten as

ρn(λ)+ ρn,h(λ) = 1
2[G0(λ− κ)+G0(λ+ κ)]δn,1+G0 ∗ [ρn−1,h + ρn+1,h] (4.1)

εn(λ) = −2π [αG0(λ− κ)+ βG0(λ+ κ)]δn,1+ TG0 ∗ ln
(
1+ eεn−1/T

)(
1+ eεn+1/T

)
(4.2)

respectively. It is important to note that these integral equations have the same integral
kernels and the similar driving terms to each other. Due to the asymmetry ofεn(λ),
let us consider these equations in two parts, i.e.λ > 0 and λ < 0. Substituting
λ → 3 − (2/π) ln(2T/π) for λ > 0 andλ → 3 + 2/π ln(2T/π) for λ < 0 in these
equations, and then differentiating (4.2) with respect to3, we obtain interesting relations
between the energy potentials and the density functions, i.e.

ρn(λ) = 1

2π2
C(α, β,±κ)dεn

d3
f (εn)

ρn,h(λ) = 1

2π2
C(α, β,±κ)dεn

d3
[1− f (εn)]

(4.3)

where the upper (lower) sign is forλ > 0 (λ < 0), and we have usedf (εn) =
(
1+eεn/T

)−1

and

C(α, β, κ) = (e1
2πκ + e−

1
2πκ
)/(

αe
1
2πκ + βe−

1
2πκ
)
. (4.4)

These relations are only valid for sufficiently lowT . For convenience, definingE±n (3) =
εn[λ ∓ (2/π) ln(2T/π)]/T and substituting the relations in (4.3) into the entropy in (2.8),
we have

S

2N
= − T

2π2

∑
σ=±
C(α, β, σκ)

∞∑
n=1

∫ Eσ,max
n

E
σ,min
n

dEσn
{
f
(
T Eσn

)
ln f

(
T Eσn

)
+[1− f (T Eσn )] ln

[
1− f (T Eσn )]} (4.5)

whereE±n satisfy the following integral equations:

E±n (3) = −
(
αe±

1
2πκ + βe∓

1
2πκ
)
e∓

1
2π3δn,1+G0 ∗ ln

(
1+ eE

±
n−1
)(

1+ eE
±
n+1
)

(4.6)

with the asymptotic condition limn→∞
(
E±n /n

) = 0. Since the driving term is negative,
E±max
n = E±n (±∞) andE±min

n = E±n (∓∞). Hence the integral equations for maximum or
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minimum solutions are reduced to the difference equations such that

E±max
n = 1

2 ln
(
1+ eE

±max
n−1

)(
1+ eE

±max
n+1

)
E±min
n6=1 = 1

2 ln
(
1+ eE

±min
n−1

)(
1+ eE

±min
n+1

)
E±min
n=1 = −∞.

(4.7)

The solutions of these equations are of the form [14]

E±max
n = ln

[(
n+ 1

)2− 1
]

E±min
n = ln

(
n2− 1

)
.

(4.8)

The entropy (4.5) in zero magnetic field is then expressed as

S

2N
= − T

2π2
[C(α, β, κ)+ C(α, β,−κ)]

∫ 1

0
dx

[
ln x

1− x +
ln (1− x)

x

]
. (4.9)

The integral is the dilogarithmic function yielding−π2/3, and so the linear coefficientγ
of specific heat in zero magnetic field,

γ = 1

6

(
e

1
2πκ + e−

1
2πκ

αe
1
2πκ + βe−

1
2πκ
+ e−

1
2πκ + e

1
2πκ

αe−
1
2πκ + βe

1
2πκ

)
(4.10)

which agrees with theγ in a finite field obtained in the previous section. Hence the limits
limT→0 and limH→0 commute with each other in the low-temperature specific heat.

5. Concluding remarks

We considered an exactly solvable two-chain quantum spin-1
2 model in generalized form

which enhances the spin frustration of the Hamiltonian. The transfer matrix of the system
was constructed by using the quantum inverse scattering method. This transfer matrix
modifies the one for a simple two-chain quantum spin model [7–9, 11] with two arbitrary
constantsα and β such asT̂ (λ) = t̂ α(λ + κ) t̂β(λ). t̂ is the typical transfer matrix of
the spin-12 Heisenberg quantum chain. We obtained the Hamiltonian from the logarithmic
derivative of the transfer matrix. The Hamiltonian is more frustrated by two constantsα,
which is related to the second chain, andβ, which is related to the first chain. To consider
the antiferromagnetic coupling between the chains, we limited ourselves to the case of
α > 0, β < 0 andα + β > 0. The Hamiltonian has an unusual term, the so-called chiral
term [7–9, 11], since this unusual term breaks bothT andP symmetries while conserving
T P symmetry whenα = β.

By construction, the eigenfunctions of the system do not change withα andβ, but the
energy changes. We constructed the thermodynamic Beth ansatz equations which differ by
the driving terms from the simple two-chain model [7–9, 11]. The difference of driving
terms resulted in the asymmetry of the energy potentials. To obtain the thermodynamic
properties, we considered two limits which can be treated analytically, namely, (i)T → 0
and 0< H � (α + β)/(1+ κ2) and (ii)H → 0 and 0< T � (α + β)/(1+ κ2) with the
restriction thatκ < (1/π) ln |α/β|.

For the limit (i), we calculated the magnetic susceptibility and the specific heat using
the ground-state thermodynamic Bethe ansatz equation. We found that the constantsα

andβ contribute rather complicatedly to the amplitudes of the magnetic susceptibility and
the specific heat with the same factor

(
e

1
2πκ + e−

1
2πκ
)[(
αe

1
2πκ + βe−

1
2πκ
)−1 + (αe−

1
2πκ +

βe
1
2πκ
)−1]

. The spin excitations show no gap even though the enhanced spin frustration
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has been considered. The reason for this might be due to the third term in the Hamiltonian
[9].

For the limit (ii), we had to consider all excitations to see the thermodynamic behaviour
since the temperature is finite. Following Babujian’s procedure [14], the entropy of the
system can be calculated. The specific heat in this limit coincided to the result of the limit
(i). This implies that the two limits, limT→0 and limH→0 are commuting to each other.
Hence the Wilson ratio limT→0 γ /χ = 2π2/3 is universal as in the Kondo problem. In this
paper we have restricted the coupling constantκ to 0< κ < (1/π) ln |α/β| for the analytic
discussions. The large-coupling limit, however, is also interesting and expected to provide
some new behaviours. The detailed work will be published elsewhere.
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