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Abstract. We consider an exactly solvable two-chain quantum ép'model in a generalized

form with enhanced spin frustration. This model is exactly diagonalized via Bethe’s ansatz. The
low-temperature specific heat of the system is obtained with and without a magnetic field, using
the thermodynamic Bethe ansatz equations. We also calculate the magnetic susceptibility in a
sufficiently weak field, yielding typical logarithmic corrections. The spin frustration affects only
the amplitudes in the magnetic susceptibility and the specific heat. This extends the previous
results for a simple two-chain quantum spin model to the generalized one.

1. Introduction

The discovery of numerous high-temperature superconductors has renewed the interest in
low-dimensional systems. It is known to be common to all compounds exhibiting a high
Tc that highd; superconductivity is strongly related to the layers containing copper and
oxygen atoms. Some theorists have approached this problem using a one-dimensional chain
of copper and oxygen atoms for simplicity, even though the two-dimensional Hubbard model
is more relevant. The idea of the one-dimensional chain is extended to copper oxide ladders
which have structures of pairs of copper oxide chains linked by additional oxygen atoms
between coppers [1, 2]. Recently, a few compounds have been realized experimentally
with a ladder structure [3] and one of these compounds, (G 36CUp4041 18 iS reported to

have superconductivity [4]. These compounds can be mapped tc%smﬁferromagnetic
ladders with frustration only if considering the magnetic properties. Understanding the
ground state for the spin-frustrated system is one of the most interesting issues in the
magnetic properties of solids. Phosphates(MP0O,)4H,0 [5] are one of the realizations

of the two-chain quantum spin model and the two-plane quantum Hall effect [6] also shows
some properties of the two-chain quantum spin model.

An exactly solvable multi-chain quantum spin model has been constructed by using
the quantum inverse scattering method, and the thermodynamics of the model has been
discussed via the Bethe ansatz method in [7-9,11]. The transfer niatix for the
multi-chain spin% model is expressed by a product of the transfer matrices for the typical
Heisenberg model with shifted spectral parameters. For instér(ae,z f(+k)f(») for a
two-chain case, whergis the transfer matrix of a single chain andlenotes the interchain
coupling. The corresponding Hamiltonian contains the terms breakiagd 7 symmetry
which is responsible for the chiral behaviour in the thermodynamic properties.

In this paper, we construct an exactly solvable two-chain quantum spin model in a
generalized form, using the generalized transfer matrif’ 6f) = /(1 + ) (1), where
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a and B are constants. This transfer matrix also yields an integrable Hamiltonian by
construction, however, the Hamiltonian is more frustrated by arbitraagd . In section 2,

we present the generalized two-chain spin Hamiltonian and the Bethe ansatz equations. In
section 3, we obtain the Bethe ansatz equation in the limit of zero temperature and a weak
but finite magnetic field, which means that the temperature goes to zero faster than the
magnetic field. We calculate the magnetic susceptibififyand the linear coefficient of
specific heat’ in a magnetic field. On the other hand, in section 4, we discuss the limit of
zero field and a low but finite temperature in which the magnetic field goes to zero faster
than the temperature, andis obtained at zero magnetic field. Concluding remarks follow

in section 5.

2. Model and Bethe ansatz equations

We consider the Hamiltonian for a two-chain spin system

2

oa+p N > > > K N > > > >
H= D (Son1- Son+ Son - Sowi1) + 75 2 (@521 Soura + BSon - Sonr2)
1+w2 = 1+k2 =
2% N . R R N
e D (@Son-1 = BSous2) - (Saupr x S20) — H Y (S5,_4+ 85,) — Ey
n=1 n=1

2.1)

where S,_1 (S2,) is spin% operator at site /2— 1 (21) in the first (second) chainy is
the number of spins on each chainjs related to the interchain coupling, ai} is the
energy of the ferromagnetic state, i = (o + B)(2+ «?)/[4(1 + «?)]. « and B are the
arbitrary constants anff is the external magnetic field. Note that the model is reduced to
a single Heisenberg chain of\2spins with exchange coupling+ 8 whenk = 0.

The third term in the Hamiltonian has an unusual form and it is not avoidable for the
integrability of the two-chain spin system. When= g, the third term breaks botfh and
P symmetries, while conserving P symmetry and the neighbouring triangular spin sets
have chiralities of different signs for the antiferromagnetic case [9, 10]. Arbitraamd 8
can enhance the spin frustration of the Hamiltonian. It is especially interesting to consider
thate > 0, B8 < 0 anda + B > 0. This situation describes an antiferromagnetic interchain
interaction, while the spins in the first (second) chain tend to interact antiferromagnetically
(ferromagnetically) with each other.

The Hamiltonian in (2.1) was obtained by the logarithmic derivative of the transfer
matrix 7 as usual. The transfer matrix of the system is constructed by using the quantum
inverse scattering method as

TO) =10 +x) P (2.2)

where? is the standard transfer matrix of the single chain of %)iandk is the spectral

parameter. The diagonalization of the transfer mafrirequires that the spin rapidities,
satisfy the discrete Bethe ansatz equations

A—k—iNY (A4 —i\Y Mk —he =2
(, p z)(,+f< l) S, o i=12...M (2.3)

)\._j—K+i )\.]—I-K—i-l kZlA_,-—M—i—Zi

with M denoting the total number of down spins in two chains of the system. Periodic
boundary conditions have been imposed to derive (2.3) and. th@ues are, in general,
complex numbers. These discrete Bethe ansatz equations do not depend on the values of
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a and 8, since the eigenfunctions of the transfer matrix do not change avigimd 8 by
construction. The eigenvalues, however, do change dueaind 8. The solutions of (2.3)
determine the energy eigenvalues,

M |: o ,8

E=-2 +
A —1024+1 (h+e)2+1

} — H(N — M). (2.4)
j=1

For largeN, we have the so-called string solutions sucmé.g = Ao +i(n+1-—2j),

j =12,...,n where i, is real andn = 1,2,...,00. There areM, strings of
length n, labelled by the indexr, hence, the total number of electrons with spin down
isM =) "2, nM,.

In the thermodynamic limit the usual distribution densitiggi) for the occupied real
parameters., , and similarly the corresponding ‘hole’ distribution functions (1) for the
unoccupied rapidities [12, 13] are introduced. These distribution functions are related by
the following integral equations:

Pun ) + Y Ap k p = 3[an (O — 1) + 4, 0 + 1) (2.5)

m=1

where x denotes convolution. The integration kerndls, (1) anda, (1) are the Fourier
transforms of

Ay (@) = € coth|o| [e- (el _ gntmlel]

|l

2.6
an(w) = (20)

The energy per spin is then given by

E [els] 00 o8 [ee]
N = —27 nz_;/oo dr [aa, (A — k) + Ba, (A + k)] pn — H|:% — ;n/oo d)»p,,]. 2.7)

As usual, the rapidities obey Fermi statistics so that the entropy of the system can be
written as

S > o0
=2 / Gl + s LN 8) + ()

—Pn ()“) In Pn ()L) - Ion,h()‘) ln pn,h()h)} (28)

and the density functions are obtained by minimizing the thermodynamic poténtial

E — TS with respect to the distribution functions, subject to the constraints in (2.5). It
is convenient to introduce, = p,../p, and in terms of these functions we have the
thermodynamic Bethe ansatz equations

In[1 4+ n,(M)] = g — Z?n[ocan(k — k) + Ba,(A + k)] + Aum *xIn (1 + n;l). (2.9)

m=1
Equivalently,n, satisfy the following nonlinearly coupled integral equations:
2
Inn, = —T[aGo(k — k) + BGo(h +K)]851+ Gox IN(L+ 1y-1) (L + 1441 (2.10)

whereG, (1) is defined by
e—nlwl

1 00 )
2) = _— gilwr 211
Gn () 2 /_oo dwz COSh|a)|e (2.11)
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The free energy per spin is then given by

F(T,H) F©0,0) _
2N 2N

-5 / A [Golr — ) + GoO. + 1IN + 1G] (2.12)

where F(0,0)/2N = —(a + B)7[G1(0) + G1(2«)] with 27 G1(0) being In2. Note that
for « = 0, the ground-state energy per spin reduces (@ + 8) In2 as expected from the
conventional Heisenberg chain oN2spins.

3. Zero-temperature limit in field

The ground-state equations are recovered in the limi> 0. It is convenient to introduce

the following energy potentials for the excitations,(A\) = T Inn,(1). These energy
potentials are further separated into their positive and negative parside,,, respectively.

In the T — O limit it can be shown that,~»(2) > 0 and therefore:,_,(1) = O for all
A-values after some algebra [13]. Hence the ground state of the system is described only
by €;. Fourier transforming (2.9) fot = 1, the equation describing the ground state of the
system is given by

e1(\) = 3H — 2[aGo(h — k) + BGo(h + k)] + G1* T In (1 + /7). (3.1)

In the case oft = B8 ork = 0, it is well known thai; (1) is a symmetric and monotonically
increasing function for positive arguments [13]. Generally, however, it is asymmetric and
has very different behaviour depending upong and«. In a weak magnetic field with
a>0,8<0,0a+8>0and0< « < (1/7)In|a/B|, the driving terms are simply
shifted to positive. compared to those @f = 8 or « = 0. This shift breaks the symmetry

of (V) in A. If « > (1/7)In|a/B], on the other hand, then the driving terms generate
a new maximum around ~ —x and a minimum around. ~ « which yield totally
different behaviours inc1(1) and cannot be treated analytically. In this section, let us
obtain analytically the magnetic susceptibility and the specific heat in a weak magnetic field
(0 < H < (a+p)/(1+«?)) by solving this integral equation analytically far> 0, g < 0,

a+ B >0and 0<«k < (1/m)Inja/Bl.

3.1. Magnetic susceptibility & = 0

Let us denote (L) atT =0 aSEio)(/\). When 0< k < (1/7) In|a/B], eio)()») has at most
two zeros defined by.”(—B;) = 0 ande\”(B,) = 0 whereB, > B; > 0. Moreover,

ef’”(k) is non-vanishing only in the interval < —B; or A > B3 in the ground state. Note
that B; and B, approaches to infinity a#/ goes to zero. At strictly zero temperature the
integral equation (3.1) can be written as

200 = 3H — 27[aGo(h — &) + BGo(A + )] + G x e”T. (3.2)
The free energy is then given by

F(O,H) F@©,0
2N 2N

731 oo
%(/ +/ )dA[Go(A — ) + Go(h +10)]€2 (). (3.3)
—00 By

Since equation (3.2) is not symmetric, unlike that for a single chain [14], it is

convenient to introduce two functiongi) and y(1) defined byz(i) = ef’) (A — By) and
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y(1) = €% (1 + By), then the ground-state integral equation (3.2) is rewritten as
0
z(0) = 3H — 2n[aGo(h — By — k) + BGo(h — By + x)] + / dx G1(n — 1) z(A)
—‘,—/ dr’ Gi(A — A — B1 — B») y()\./) (34)
0
or
y() = %H = 27[aGo(A + B2 — k) + BGo(r + B2 + «)] +/ dv Gi(x =) y(\)
0
0
—‘r—/ d\ Gi(A — A+ B1 + Bo) z(\). (3.5)
For a sufficiently weak magnetic field, i.¢1 < (« + B)/(1 + «?), these coupled
equations (3.4) and (3.5) can be solved using the Wiener—Hopf method [14] by iterations.
Expandingz(i) = z1(X) + z2(2) and y(A) = y1(1) + y2(A) with zo(A) and y,(A) being of

higher order in X(B1 + B,) thanzi(1) andy;()), respectively, we have

0
20 — / dV Gi(h — 1) 22(W) = 1H — 2n[aGo(A — By — k)

+BGo(A — By + k)] (3.6)
y1(A) — / d\' G1(A — A) y1(\') = $H — 2w[aGo(r + B2 — k)
0
+BGo(A + Bz + k)] (3.7)
0 0
z2(A) — / d G1(h — 1) o)) = / dA\"G1(A — A" — By — By) y1()) (3.8)
00 0
00 0
y2(A) — /0 dv G1(r = 1) y2(M) = / dv G1(A — A"+ By + B2) z2(1). (3.9)

The solutions of these equations are the following:

i - 1- 1 1
() = _E g(—w) 8(0) + i]'rg( ) 51<2|ﬂ) [ae_in(gﬁ.,() + IBe—En(Bl—K)] (3_10)
2 w-—Ii0 w— 3w
o iHg@gO® . g@g(Gin) i s
) = > eti0 i o %in [oce + pe ] (3.11)
s Hg(-w)g©( 1 2In(Bi+ By)
2w) = 2r o —i0 <Bj_ + B> w(By + Bz)z ) (312)
- 1Hg()g(0 1 2In(B1+ Bo)
) = 0 (Bl ¥ B, 7(Bi+ By)? ) (3.13)
where

_ i —iwh [
=5 / do & f ()
V2r (—ia) + o>—““/”

I3 —io/n) er

(3.14)

g(w) =

with T being a Gamma function. Note that these expressiong’9f and y(1) are valid
only for » < 0 andi > 0, respectively. Using the conditiong0) = 0 andy(0) = 0O, the
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following relations are now obtained, i.e.

2 HgO
Bi~—<1n [ - 8O ] (3.15)
w2 g(Gim) (we 2 4 pe)
and
Hg(0
Bzz——ln[ - O ] (3.16)
o [ 27g(3in)(ae™/2 4+ Bemr/2)
The field-dependent term in the free energy (3.3) is then rewritten as
F(07 H) F(O» 0) éwk +eiin —jwB, ~ iwB, ~
— = — — ez gore 3.17
2N 2N / 8r coshw [ @) + Y (w)] ( )
and hence the magnetic susceptibility becomes
1 ( @37k 4 g 27K e 37K 4 @27k )[ 1 In|In H| }
Xs = 575 T 1 T T — -
42\ i 4 peiTF  ge 3TF 4 Bedns 2(InH| A4[InH?
(3.18)

Note that in the limitH — 0, the coupling between two spin chains affects only the
magnitude in the susceptibility and the field-correction terms of the typical Heisenberg
chain are preserved. The first logarithmic correction was anticipated by Yang and Yang
[15] and calculated by Babujian [14], while the next-to-leading logarithmic contribution
was obtained by Lee and Schlottmann [16]. Of course, the magnetic susceptibility for
x = 0 reduces to the well known Value’[]crz(a + ﬁ)] of the Heisenberg chain with an
antiferromagnetic couplingx + 8) [17, 18].

3.2. Linear specific heat coefficieptin field

The low-temperature specific heat is linear in temperature. To obtain the linear coefficient
y in the low-temperature expansion of the free energy, we nee@tmmrrection terms to
e1(M), i.e.

a) ~ e + 122 (0. (3.19)
The ground-state integral equation (3.1) is then separated by using a Sommerfeld expansion,
Thn(1+eT) ~ef () + L(xT)?5(e). (3.20)

ef) satisfies the integral equation (3.2) aﬁa responsible for the specific heat satisfies the
following integral equation:

-1 0) -1

deio) €,
Gi1(A + By) + e

dh |,

2
&m=l[
By
731 o
+</ +/ )dA’Gl(A—k’) P (). (3.21)
—0o0 By

6

Gi1(r — Bz)}
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Considering thesf) contribution to the free energy, the linear coefficignof the specific

heat can be expressed by

2 deio) -1
V= F[ di

{Go(Bl —k)+ Go(B1 + K)}
-B;

0
de;

da

-1
+

{Go(B2 — k) + Go(Bz2 + K)}i|
;73

—B; 0o
+</ + / )dx [Go( — k) + Go( + )] €2 (3. (3-22)
—00 B,

Hence, to calculatg, it is necessary to solve the integral equatiorarfff(k) in (3.21). Our
procedure to solve (3.21) is similar to the one used to obzt%?nin the above. Defining
Y () = €2 (L — By ande(r) = €2 (A + By), the integral equation (3.21) is reduced to
two coupled integral equations fgr(i) andg (1),

0 -1 0 -1
YA = 71_2 de_i) Gi(A) + 77_2 de_i) G1(A — B1 — By)
6| dr |, 6| dr |y,
0 o)
+/ AV Gi(h — M) () + / AV Gi(h — X — B1 — Bo)9(%)  (3.23)
—00 0
©) -1 0 -1
pA) = 7;_2 —1) G1(A) + n—z de_i) G1(A + B1+ By)
6| dr |y, 6| dr |,

o) 0
+[ dx Gi(x — ) (V) + / dV G1(A — A 4+ B1+ B2) o(A).  (3.24)
0 —00
The absence of symmetry inf)(k) again leads to the coupled forms of these integral
equations. Considering the leading contribution since the next terms can only contribute
to order ¥(B; + B»)? or higher in the free energy, equations (3.23) and (3.24) are simply
rewritten as

7.[2 df(o) -1 0
Yr) = S ﬁ G1(V) +f dv' Gi(A — M)y () (3.25)
—B1 —00
2 6(0) -1 S
o)) = R j G1(V) +/ dr’ Gi(h — 1) e(A). (3.26)
B> 0

These equations are the same as those for the single chain [19] except for the driving terms.
The driving terms are now changed since the integral equatimiobfln (3.2) has been
changed with parametets g and«. Hence

dei” (1 :
e M Lr2g(Lin)e #71 (gem b7 4 pedn) (3.27)
d)\. _Bl
det” (1 :
Eld,\( )| _ %ﬁg(%m)e*%”&(ae%” + ﬁe*%”’()_ (3.28)
B>

The integral equations fap andg are of the Wiener—Hopf type and the solutioféL)
for A < 0 andg(r) for A > 0 can be obtained as

_ 1 —iwA _ _
T / do e g(—w) — 1] (3.29)

_ 1 —iwA _
o) = —3\/§H fdwe [g(w) — 1]. (3.30)
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Insertingyr and g into they expression in (3.22), we obtain that
1 e:—zlmc + eférm efémc _’_e%m(
é[ae;m tBe i e b +ﬂegm}

in a weak magnetic field. This result correctly reduces 8@ + 8)] for « = 0.

(3.31)

4. Low-temperature limit in zero field

So far we have considered the limit 5f— 0 and 0< H < (a+p8)/(1+«?) in the previous
section and have shown that only one integral equatiomfer 1 plays a significant role.
On the other hand, the case wher @ « (a+ﬁ)/(1+fc2) and H = 0 is also interesting.
In this case, however, we have to consider the infinitely coupled integral equations (2.10).
Fortunately, we can calculate the entropy for this limit by the method used by Babujian [14]
and Filyovet al [20]. Note that we are still assuming the limit ofO«x < (1/7)In|a/B|
for the analytic approach.

The integral equations in (2.5) for the distribution functions and (2.10) for the energy
potentials can be rewritten as

Pu(A) + Pun(M) = [Go(h — k) + Go(h + 1)18,.1 + Go * [Pa—14 + Pas14] (4.1)
&) = —21[aGo(r — k) + BGo( +1)]18,1 + TGo  In (L + /1) (1+e/T)  (4.2)

respectively. It is important to note that these integral equations have the same integral
kernels and the similar driving terms to each other. Due to the asymmetey (b,

let us consider these equations in two parts, he> 0 and A < 0. Substituting

A —> A—2/m)In@2T /) for A > 0 andr — A + 2/7In2T/x) for A < 0 in these
equations, and then differentiating (4.2) with respectAtowe obtain interesting relations
between the energy potentials and the density functions, i.e.

1) = de,
;On( )—? Af(en)

(4.3)

;On,h()\) = ﬁ
where the upper (lower) sign is far> 0 (A < 0), and we have usefl(¢,) = (1-|—e€~/T)_1
and

Cla, B, k) = (€7 + & 57) [ (wed™ + e +7). (4.4)

These relations are only valid for sufficiently lof. For convenience, definin=(A) =
e[r F (2/7)In(2T /7)]/ T and substituting the relations in (4.3) into the entropy in (2.8),
we have

Eamax
2N -5 ZC(O{ B. O'K)Z/ dES {f(TEZ)In f(TE?)

[1— F(TE)]In[1— f(TE])]} (4.5)
where E* satisfy the following integral equations:
EX(A) = —(aei%”" + ﬂejF%”")ejF%”Aan,l + Gox*In(1+ eEil)(l + eE~i+1) (4.6)

with the asymptotic condition lij, (E/n) = 0. Since the driving term is negative,
EXMaX — F£(+o0) and EXMN = E*(F00). Hence the integral equations for maximum or
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minimum solutions are reduced to the difference equations such that

EF™ = L1in (14 e557) (14 517
BN = 3in (14 &) (14 €5 ) “n
BN = —oo.

The solutions of these equations are of the form [14]

EF™ = In[(n+1)° - 1]

: (4.8)
EF™ =In (nz — l).
The entropy (4.5) in zero magnetic field is then expressed as
S T ! Inx In(1-=x)
oy = ~ 5310 B0 +Cla B, —x)]/o dx|:1—x +— } (4.9)

The integral is the dilogarithmic function yieldingz?/3, and so the linear coefficient
of specific heat in zero magnetic field,

1 e%n’l( +e_%7“( e—%TrK +e%7TK
é(ae;m tBe it e +ﬁe;m)
which agrees with the in a finite field obtained in the previous section. Hence the limits
limr_o and limy_.o commute with each other in the low-temperature specific heat.

(4.10)

5. Concluding remarks

We considered an exactly solvable two-chain quantum %pinedel in generalized form
which enhances the spin frustration of the Hamiltonian. The transfer matrix of the system
was constructed by using the quantum inverse scattering method. This transfer matrix
modifies the one for a simple two-chain quantum spin model [7-9, 11] with two arbitrary
constantse and B such asT' (L) = (A + «)7#(1). i is the typical transfer matrix of

the spin% Heisenberg quantum chain. We obtained the Hamiltonian from the logarithmic
derivative of the transfer matrix. The Hamiltonian is more frustrated by two constants
which is related to the second chain, aghdwhich is related to the first chain. To consider

the antiferromagnetic coupling between the chains, we limited ourselves to the case of
a > 0,8 <0anda + B8 > 0. The Hamiltonian has an unusual term, the so-called chiral
term [7-9, 11], since this unusual term breaks bbthnd P symmetries while conserving

T P symmetry wherw = 8.

By construction, the eigenfunctions of the system do not changeawéthd 8, but the
energy changes. We constructed the thermodynamic Beth ansatz equations which differ by
the driving terms from the simple two-chain model [7-9, 11]. The difference of driving
terms resulted in the asymmetry of the energy potentials. To obtain the thermodynamic
properties, we considered two limits which can be treated analytically, namelf,) 0
and 0< H < (e + B)/(1+«?) and (i) H — 0 and 0< T < (o + B)/(1+ «?) with the
restriction thatc < (1/7)In|a/B].

For the limit (i), we calculated the magnetic susceptibility and the specific heat using
the ground-state thermodynamic Bethe ansatz equation. We found that the coastants
and 8 contribute rather complicatedly to the amplitudes of the magnetic susceptibility and

the specific heat with the same facl@%”” + e*%”)[(ae%” + ,Be*%’”)f1 + (ae*%“ +
ﬁe%”K)_l]. The spin excitations show no gap even though the enhanced spin frustration
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has been considered. The reason for this might be due to the third term in the Hamiltonian
[9].

For the limit (ii), we had to consider all excitations to see the thermodynamic behaviour
since the temperature is finite. Following Babujian’s procedure [14], the entropy of the
system can be calculated. The specific heat in this limit coincided to the result of the limit
(). This implies that the two limits, lin,o and limy_o are commuting to each other.
Hence the Wilson ratio lim_ oy /x = 272/3 is universal as in the Kondo problem. In this
paper we have restricted the coupling constai 0 < « < (1/7) In|«a/B| for the analytic
discussions. The large-coupling limit, however, is also interesting and expected to provide
some new behaviours. The detailed work will be published elsewhere.
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